Машинное обучение помогло CRISPR отредактировать геном по-настоящему
Фото: N+1
0 21

Машинное обучение помогло CRISPR отредактировать геном по-настоящему

Как выяснилось, для примерно десятой части случаев можно с высокой вероятностью предсказать, какая последовательность там образуется после работы систем репарации ДНК.

Американские исследователи разработали вычислительную модель, предсказывающую исход репарации той или иной последовательности ДНК после того как ее порезал белок Cas9. Как выяснилось, для примерно десятой части случаев можно с высокой вероятностью предсказать, какая последовательность там образуется после работы систем репарации ДНК. Это позволило ученым исправить ряд вредных мутаций в клетках человека при помощи CRISPR без дополнительного использования матрицы для редактирования. Работа опубликована в Nature.

Система редактирования генома CRISPR-Cas9 содержит два основных компонента – белок Cas9 и короткую затравку (направляющую РНК), которая указывает Cas9, какое место генома ему порезать. Этот базовый комплект, строго говоря, ничего не редактирует, он просто вносит в геном двуцепочечный разрыв в заданном месте. Чтобы вставить в это место нужную последовательность, необходим третий компонент – матричная ДНК, содержащая ту самую последовательность, которую нужно внести в геном. Используя эту матрицу, клеточная система репарации по механизму гомологичной рекомбинации залечивает разрыв в ДНК и встраивает туда нужный кусочек.

В отсутствие матрицы для репарации (и даже если она есть, так как гомологичная рекомбинация в клетках человека работает довольно плохо) разрез восстанавливается с участием других систем репарации ДНК, в частности, системы негомологичного соединения концов (NHEJ) и соединения концов на основе микрогомологии (MMEJ). После работы этих систем на месте разреза остаются небольшие делеции или инсерции, которые в большинстве случаев нарушают работу гена. Именно поэтому при помощи «базового комплекта» CRISPR-Cas9 легко сломать ген, но сложно починить.

 

Предполагаемые механизмы залечивания двуцепочечного разрыва в ДНК без матрицы для рекомбинации

Max W. Shen et al / Nature 2018

 

Исследователи из Массачусетского технологического института решили превратить недостаток систем репарации в достоинство и создали модель на основе машинного обучения, которая с высокой вероятностью предсказывает исход репарации ДНК по механизмам NHEJ и MMEJ, то есть сообщает, какая именно последовательность в месте разреза образуется после репарации с учетом делеций и инсерций как минимум в 50 процентах случаев. Согласно модели, предсказать исход репарации с такой точностью можно для 5-11 процентов всех направляющих РНК для человеческого генома («precise-50»). Для построения модели inDelphi ученые использовали экспериментальные данные, которые получили после разрезания генома Cas9 почти двух тысяч сайтов в ДНК.

Читать далее

Последние новости
Решение завершает реформу, длившуюся несколько десятков лет.…
За доказательство невозможности существования этой модификации в 1954 году была присуждена Нобелевская премия…
Что академики обсуждали на Общем собрании РАН.…